New Insights and Approach Toward the Genetic Diversity and Strain Typing of Erwinia pyrifoliae Based on rsxC, an Electron Transport Gene
- Hyeonheui Ham
- Dong Suk Park †
- Crop Protection Division, National Institute of Agricultural Sciences, Wanju-gun 55365, Republic of Korea
Abstract
Erwinia pyrifoliae, a causal agent of black shoot blight in apple and pear trees, is a plant pathogenic bacterium first reported in South Korea. The symptoms of black shoot blight are very similar to those of the fire blight disease in apple and pear trees caused by E. amylovora, as E. pyrifoliae has a genetically very close relationship with E. amylovora. Recently, there have been reports that E. pyrifoliae causes disease in European strawberries, resulting in severe fruit loss that aroused great concern about its spread, distribution, and host range. Therefore, it is essential to establish a trustworthy approach to understanding the distribution patterns of E. pyrifoliae based on the genetic background to strengthen the barrier of potential spreading risks, although advanced methods have been provided to accurately detect E. pyrifoliae and E. amylovora. Consequently, this study discovered a noble and noteworthy gene, rsxC, capable of providing the pathogen genotype by comparing E. pyrifoliae genomic sequences in the international representative genome archive. Different numbers of 40-unit amino acid repeats in this gene among the strains induced intraspecific traits in RsxC. By comparing their repeat pattern, E. pyrifoliae isolates were divided into two main groups, branching into several clades via sequence alignment of 35 E. pyrifoliae isolates from various apple orchards from 2020 to 2021 in South Korea. The newly discovered quadraginta amino acid repeat within this gene would be a valuable genetic touchstone for determining the genotype and distribution pattern of E. pyrifoliae strains, ultimately leading to exploring their evolution. The function of amino acid repeats and the biological significance of strains need to be elucidated further.
Literature Cited
- 2021. Forest and trees: Exploring bacterial virulence with genome-wide association studies and machine learning. Trends Microbiol. 29:621‐633. https://doi.org/10.1016/j.tim.2020.12.002 CrossrefWeb of ScienceGoogle Scholar
- 2017. Modification of a multiple-locus variable number tandem repeat analysis (MLVA) for typing isolates of Erwinia amylovora. Plant Pathol. 66:1075‐1080. https://doi.org/10.1111/ppa.12660 CrossrefWeb of ScienceGoogle Scholar
- 2011. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell. Mol. Life Sci. 68:613‐634. https://doi.org/10.1007/s00018-010-0555-8 CrossrefWeb of ScienceGoogle Scholar
- 2005. Infection, carbohydrate utilization, and protein profiles of apple, pear, and raspberry isolates of Erwinia amylovora. Can. J. Plant Pathol. 27:338‐346. https://doi.org/10.1080/07060660509507231 CrossrefWeb of ScienceGoogle Scholar
- 2014. Phylogeography and population structure of the biologically invasive phytopathogen Erwinia amylovora inferred using minisatellites. Environ. Microbiol. 16:2112‐2125. https://doi.org/10.1111/1462-2920.12289 CrossrefWeb of ScienceGoogle Scholar
- 2002. Comparative assessment of genotyping methods for epidemiologic study of Burkholderia cepacia genomovar III. J. Clin. Microbiol. 40:3300‐3307. https://doi.org/10.1128/jcm.40.9.3300-3307.2002 CrossrefWeb of ScienceGoogle Scholar
- 2012. Newly identified genetic variations in common Escherichia coli MG1655 stock cultures. J. Bacteriol. 194:303‐306. https://doi.org/10.1128/JB.06087-11 CrossrefWeb of ScienceGoogle Scholar
- 2023. Novel detection and quantification approach of Erwinia amylovora in vitro and in planta using SYBR Green-based real-time PCR assay. Plant Dis. 107:624‐627. https://doi.org/10.1094/PDIS-05-22-1227-SC LinkWeb of ScienceGoogle Scholar
- 2012. Tandem repeats in proteins: From sequence to structure. J. Struct. Biol. 179:279‐288. https://doi.org/10.1016/j.jsb.2011.08.009 CrossrefWeb of ScienceGoogle Scholar
- 2006. Identification of Salmonella enterica serovar Typhimurium using specific PCR primers obtained by comparative genomics in Salmonella serovars. J. Food Prot. 69:1653‐1661. https://doi.org/10.4315/0362-028x-69.7.1653 CrossrefWeb of ScienceGoogle Scholar
- 1999. Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int. J. Syst. Evol. Microbiol. 49:899‐905. https://doi.org/10.1099/00207713-49-2-899 CrossrefWeb of ScienceGoogle Scholar
- 2001. Molecular detection and differentiation of Erwinia pyrifoliae and host range analysis of the Asian pear pathogen. Plant Dis. 85:1183‐1188. https://doi.org/10.1094/PDIS.2001.85.11.1183 LinkWeb of ScienceGoogle Scholar
- 2003. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J. 22:2614‐2622. https://doi.org/10.1093/emboj/cdg252 CrossrefWeb of ScienceGoogle Scholar
- 2010. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genom. 11:393. https://doi.org/10.1186/1471-2164-11-393 CrossrefWeb of ScienceGoogle Scholar
- 2008. The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ. Microbiol. 10:2211‐2222. https://doi.org/10.1111/j.1462-2920.2008.01639.x CrossrefWeb of ScienceGoogle Scholar
- 2020. The Rnf complex from the acetogenic bacterium Acetobacterium woodii: Purification and characterization of RnfC and RnfB. Biochim. Biophys. Acta Bioenerg. 1861:148263. https://doi.org/10.1016/j.bbabio.2020.148263 CrossrefWeb of ScienceGoogle Scholar
- 2010. Genomics-based diagnostic marker development for Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Plant Dis. 94:311‐319. https://doi.org/10.1094/PDIS-94-3-0311 LinkWeb of ScienceGoogle Scholar
- 2020. Comparative genome analysis reveals natural variations in the genomes of Erwinia pyrifoliae, a black shoot blight pathogen in apple and pear. Plant Pathol. J. 36:428‐439. https://doi.org/10.5423/PPJ.OA.06.2020.0097 CrossrefWeb of ScienceGoogle Scholar
- 2009. Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 33:892‐916. https://doi.org/10.1111/j.1574-6976.2009.00182.x CrossrefWeb of ScienceGoogle Scholar
- 2014. Understanding and identifying amino acid repeats. Brief. Bioinform. 15:582‐591. https://doi.org/10.1093/bib/bbt003 CrossrefWeb of ScienceGoogle Scholar
- 1988. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance. Clin. Microbiol. Rev. 1:228‐243. https://doi.org/10.1128/cmr.1.2.228 CrossrefGoogle Scholar
- 2012. Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking. PLoS One 7:e41706. https://doi.org/10.1371/journal.pone.0041706 CrossrefWeb of ScienceGoogle Scholar
- 2003. Evaluation of genotyping large numbers of Escherichia coli isolates by enterobacterial repetitive intergenic consensus-PCR. J. Clin. Microbiol. 41:5224‐5226. https://doi.org/10.1128/jcm.41.11.5224-5226.2003 CrossrefWeb of ScienceGoogle Scholar
- 2021. CRISPR genotyping as complementary tool for epidemiological surveillance of Erwinia amylovora outbreaks. PLoS One 16:e0250280. https://doi.org/10.1371/journal.pone.0250280 CrossrefWeb of ScienceGoogle Scholar
- 1997. Characterization of Erwinia amylovora strains using random amplified polymorphic DNA fragments (RAPDs). J. Appl. Microbiol. 82:389‐398. https://doi.org/10.1046/j.1365-2672.1997.00377.x CrossrefWeb of ScienceGoogle Scholar
- 2020. Comparative genomics in infectious disease. Curr. Opin. Microbiol. 53:61‐70. https://doi.org/10.1016/j.mib.2020.02.009 CrossrefWeb of ScienceGoogle Scholar
- 2020. Comparative genomic analysis of Erwinia amylovora reveals novel insights in phylogenetic arrangement, plasmid diversity, and streptomycin resistance. Genomics 112:3762‐3772. https://doi.org/10.1016/j.ygeno.2020.04.001 CrossrefWeb of ScienceGoogle Scholar
- 2011. Complete genome sequence of Japanese Erwinia strain Ejp617, a bacterial shoot blight pathogen of pear. J. Bacteriol. 193:586‐587. https://doi.org/10.1128/JB.01246-10 CrossrefWeb of ScienceGoogle Scholar
- 2010. Species-specific detection of Erwinia pyrifoliae by PCR assay using enterobacterial repetitive intergenic consensus (ERIC) primers. Plant Pathol. J. 26:267‐270. https://doi.org/10.5423/ppj.2010.26.3.267 CrossrefWeb of ScienceGoogle Scholar
- 2019. Identification and analysis of long repeats of proteins at the domain level. Front. Bioeng. Biotechnol. 7:250. https://doi.org/10.3389/fbioe.2019.00250 CrossrefWeb of ScienceGoogle Scholar
- 2011. Diversity, evolution, and functionality of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Appl. Environ. Microbiol. 77:3819‐3829. https://doi.org/10.1128/AEM.00177-11 CrossrefWeb of ScienceGoogle Scholar
- 1999. Erwinia pyrifoliae, an Erwinia species different from Erwinia amylovora, causes a necrotic disease of Asian pear trees. Plant Pathol. 48:514‐520. https://doi.org/10.1046/j.1365-3059.1999.00376.x CrossrefWeb of ScienceGoogle Scholar
- 2015. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J. Clin. Microbiol. 53:1072‐1079. https://doi.org/10.1128/JCM.03385-14 CrossrefWeb of ScienceGoogle Scholar
- 2018. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin. Microbiol. Infect. 24:350‐354. https://doi.org/10.1016/j.cmi.2017.12.016 CrossrefWeb of ScienceGoogle Scholar
- 2010. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946. J. Bacteriol. 192:2020‐2021. https://doi.org/10.1128/JB.00022-10 CrossrefGoogle Scholar
- 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30:2068‐2069. https://doi.org/10.1093/bioinformatics/btu153 CrossrefWeb of ScienceGoogle Scholar
- 2007. Diversity and detection of Korean Erwinia pyrifoliae strains as determined by plasmid profiling, phylogenetic analysis and PCR. Plant Pathol. 56:1023‐1031. https://doi.org/10.1111/j.1365-3059.2007.01679.x CrossrefWeb of ScienceGoogle Scholar
- 2021. Techniques in bacterial strain typing: Past, present, and future. Curr. Opin. Infect. Dis. 34:339‐345. https://doi.org/10.1097/QCO.0000000000000743 CrossrefWeb of ScienceGoogle Scholar
- 2010. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity. BMC Genom. 11:2. https://doi.org/10.1186/1471-2164-11-2 CrossrefWeb of ScienceGoogle Scholar
- 1998. Molecular epidemiologic typing systems of bacterial pathogens: Current issues and perspectives. Mem. Inst. Oswaldo Cruz 93:581‐585. https://doi.org/10.1590/s0074-02761998000500004 CrossrefWeb of ScienceGoogle Scholar
- 2007. Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. Annu. Rev. Phytopathol. 45:129‐151. https://doi.org/10.1146/annurev.phyto.45.062806.094317 CrossrefWeb of ScienceGoogle Scholar
- 2013. Comparative genomics of Japanese Erwinia pyrifoliae strain Ejp617 with closely related erwinias. Genome 56:83‐90. https://doi.org/10.1139/gen-2012-0094 CrossrefWeb of ScienceGoogle Scholar
- 2015. Erwinia pyrifoliae, a new pathogen on strawberry in the Netherlands. J. Berry Res. 5:17‐22. https://doi.org/10.3233/jbr-140086 CrossrefWeb of ScienceGoogle Scholar
- 2023. Examination of large chromosomal inversions in the genome of Erwinia amylovora strains reveals worldwide distribution and North America-specific types. Phytopathology 113:2174‐2186. https://doi.org/10.1094/PHYTO-01-23-0004-SA LinkWeb of ScienceGoogle Scholar