MPMI PhytoFrontiers Phytobiomes all journals
Disease NotesFree Access icon

First Report of Iris yellow spot virus on Garlic in India

    Affiliations
    Authors and Affiliations
    • S. J. Gawande
    • A. Khar
    • K. E. Lawande , Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India

      Published Online:https://doi.org/10.1094/PDIS-94-8-1066C

      Garlic (Allium sativum) is a spice crop of prime importance in India as well as other parts of the world. Iris yellow spot virus (IYSV; genus Tospovirus, family Bunyaviridae) is an important pathogen of onion bulb and seed crops in many parts of the world (3). The virus is also known to infect garlic and other Allium spp. (2–4). IYSV infection of garlic was reported from Reunion Island (4) and the United States (1). In February 2010, straw-colored, spindle-shaped spots with poorly defined ends were observed on the leaves of a garlic crop at the research farm of the Directorate of Onion and Garlic Research in the Pune District of Maharashtra State, India, 105 days after planting. The spots coalesced to form larger patches on the leaves, suggesting possible IYSV infection. Symptoms were visible on older leaves and more prevalent on cv. G-41, G-282, AC50, AC200, AC283, and Godavari than on other cultivars. The incidence of symptomatic plants was estimated at 5% for G-41 and AC-200, 8% for G-282 and AC283, and 10% for AC50. Leaves were sampled from 40 symptomatic plants per cultivar with each sample composited from young, middle, and older (basal) leaves of the plant. Samples were assayed by double-antibody sandwich-ELISA (Loewe Biochemica GmbH, Sauerlach, Germany) and each tested positive for the virus. Total RNA was extracted from the leaves of ELISA-positive plants using the RNAeasy Plant Mini kit (Qiagen GmbH, Hilden, Germany) and tested by reverse transcription-PCR assay using primers IYSV-F (5′-TCAGAAATCGAGAAACTT-3′) and IYSV-R (5′-TAATTATATCTATCTTTCTTGG-3′) (2) designed to amplify 797 bp of the nucleocapsid (N) gene of IYSV. Amplicons of expected size were obtained and cloned into a pDrive vector (Qiagen GmbH). The recombinant clone was sequenced (GenBank Accession No. HM173691). Sequence comparisons showed 98 to 100% nt identity with other IYSV N gene sequences in GenBank (Nos. EU310294 and EU310286). A phylogenetic analysis of the deduced amino acid sequences of the N gene showed that the garlic isolate of IYSV grouped most closely with onion IYSV isolates from India (GenBank Nos. EU310294, EU310286, EU310300, and EU310296). To our knowledge, this is the first report of natural infection of garlic by IYSV in India. Additional surveys and evaluations are needed to obtain a better understanding of the potential impact of IYSV on garlic production in India.

      References: (1) S. Bag et al. Plant Dis. 93:839, 2009. (2) A. Bulajic et al. Plant Dis. 93:976, 2009. (3) D. Gent et al. Plant Dis. 90:1468, 2006. (4) I. Robène-Soustrade et al. Plant Pathol. 55:288, 2006.