Research

Screening the Soybean Nested Association Mapping (SoyNAM) Parents for Resistance Toward Isolates of Phytophthora sojae, Fusarium graminearum, and Species of Globisporangium

    Affiliations
    Authors and Affiliations
    • Carlos Bolanos-Carriel1
    • Christine Balk1
    • Damitha K. Wickamasinghe1
    • Bhupendra Acharya1
    • Anne E. Dorrance1 2 3
    1. 1Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH 44691
    2. 2Center for Soybean Research, The Ohio State University, Wooster, OH 44691
    3. 3Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210

    Published Online:https://doi.org/10.1094/PHP-12-22-0126-RS

    The Soybean Nested Association Mapping (SoyNAM) populations were developed from 40 parents and have been used to map genes underlying complex traits such as yield and disease resistance. Soilborne pathogens that affect soybean seed and seedlings result in significant losses due to reduced stands and costs associated with replanting. This study compared the response of these 40 SoyNAM parent genotypes to seed- and seedling-rot pathogens Fusarium graminearum, Phytophthora sojae, Globisporangium ultimum var. ultimum, G. ultimum var. sporangiiferum, G. irregulare groups 1 and 2, and G. cryptoirregulare. None of the parental genotypes conferred high levels of resistance to F. graminearum or G. ultimum var. sporangiiferum. Of the 40 parental genotypes, 15 were resistant to P. sojae OH1 (vir 7), indicating that they contain Rps genes, whereas the remaining (including the common parent IA3023) do not have Rps genes. Based on inoculations with known P. sojae pathotypes, Rps1c was the most common, followed by Rps1a, as both Rps genes confer resistance to isolates OH4 (vir 1a, 1c, 7) and OH25 (vir 1a, 1b, 1c, 1k, 7). Eight of the SoyNAM parents had higher levels of partial resistance to P. sojae than Conrad (a cultivar with moderate resistance). There was moderate resistance to G. ultimum var. ultimum among the 40 parents and to G. irregulare subpopulations among the six parents that were evaluated. The SoyNAM parental lines and populations are an excellent resource available for soybean breeders to advance the development of new cultivars with improved resistance to some soilborne pathogens.

    Literature Cited

    • Acharya, B., Lee, S., Mian, M. A. R., Jun, T., McHale, L. K., Michel, A. P., and Dorrance, A. E. 2015. Identification and mapping of quantitative trait loci (QTL) conferring resistance to Fusarium graminearum from soybean PI 567301B. Theor. Appl. Genet. 128:827-838. https://doi.org/10.1007/s00122-015-2473-5 Crossref, ISIGoogle Scholar
    • Balk, C. 2014. Assessment of Resistance in Soybean to Pythium ultimum and Sensitivity of Ohio's Diverse Pythium Species Towards Metalaxyl. Graduate Thesis. The Ohio State University, Columbus, OH. Google Scholar
    • Bradley, C. A. 2008. Effect of fungicide seed treatments on stand establishment, seedling disease, and yield of soybean in North Dakota. Plant Dis. 92:120-125. https://doi.org/10.1094/PDIS-92-1-0120 Link, ISIGoogle Scholar
    • Bradley, C. A., Allen, T. W., Sisson, A. J., Bergstrom, G. C., Bissonnette, K. M., Bond, J., Byamukama, E., Chilvers, M. I., Collins, A. A., Damicone, J. P., Dorrance, A. E., Dufault, N. S., Esker, P. D., Faske, T. R., Fiorellino, N. M., Giesler, L. J., Hartman, G. L., Hollier, C. A., Isakeit, T., Jackson-Ziems, T. A., Jardine, D. J., Kelly, H. M., Kemerait, R. C., Kleczewski, N. M., Koehler, A. M., Kratochvil, R. J., Kurle, J. E., Malvick, D. K., Markell, S. G., Mathew, F. M., Mehl, H. L., Mehl, K. M., Mueller, D. S., Mueller, J. D., Nelson, B. D., Overstreet, C., Padgett, G. B., Price, P. P., Sikora, E. J., Small, I., Smith, D. L., Spurlock, T. N., Tande, C. A., Telenko, D. E. P., Tenuta, A. U., Thiessen, L. D., Warner, F., Wiebold, W. J., and Wise, K. A. 2021. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2015 to 2019. Plant Health Prog. 22:483-495. https://doi.org/10.1094/PHP-01-21-0013-RS Link, ISIGoogle Scholar
    • Broders, K. D., Lipps, P. E., Paul, P. A., and Dorrance, A. E. 2007a. Characterization of Pythium spp. associated with corn and soybean seed and seedling disease in Ohio. Plant Dis. 91:727-735. https://doi.org/10.1094/PDIS-91-6-0727 Link, ISIGoogle Scholar
    • Broders, K. D., Lipps, P. E., Paul, P. A., and Dorrance, A. E. 2007b. Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling disease in Ohio. Plant Dis. 91:1155-1160. https://doi.org/10.1094/PDIS-91-9-1155 Link, ISIGoogle Scholar
    • Broders, K. D., Wallhead, M. W., Austin, G. D., Lipps, P. E., Paul, P. A., Mullen, R. W., and Dorrance, A. E. 2009. Association of soil chemical and physical properties with Pythium species diversity, community composition, and disease incidence. Phytopathology 99:957-967. https://doi.org/10.1094/PHYTO-99-8-0957 Link, ISIGoogle Scholar
    • Brown-Guedira, G. L., Warburton, M. L., and Nelson, R. L. 2004. Registration of LG92-1255, LG93-7054, LG93-7654, and LG93-7792 soybean germplasm. Crop Sci. 44:356-358. Google Scholar
    • Cerritos-Garcia, D. G., Granda, J. P., Matthiessen, R., Diers, B. W., Robertson, A. E., and Mideros, S. X. 2021. Effect of resistance and ethaboxam seed treatment on the management of Phytophthora root rot in Illinois and Iowa. Plant Health Prog. 22:58-65. https://doi.org/10.1094/PHP-08-20-0068-RS Link, ISIGoogle Scholar
    • Debruyne, I. 2007. Novel soybean oil products for a healthier nutrition–Recent developments, market introduction and targeted commercialization. Lipid Tech. 19:128-131. https://doi.org/10.1002/lite.200700044 CrossrefGoogle Scholar
    • Diers, B. W., Specht, J., Rainey, K. M., Cregan, P., Song, Q. Ramasubramanian, V., Graef, G., Nelson, R., Schapuagh, W., Wang, D., Shannon, G., McHale, L., Kantartzi, S. K., Xavier, A., Mian, R., Stupar, R. M., Michno, J., Charles An, Y.-Q., Goettel, W., Ward, R., Fox, C., Lipka, A. E., Hyten, D., Cary, T., and Beavis, W. D. 2018. Genetic architecture of soybean yield and agronomic traits. G3 Genes Genomes Genet. 8:3367-3375. Crossref, ISIGoogle Scholar
    • Dorrance, A. E. 2018. Management of Phytophthora sojae on soybean: A review and future perspectives. Can. J. Plant Pathol. 40:210-219. https://doi.org/10.1080/07060661.2018.1445127 Crossref, ISIGoogle Scholar
    • Dorrance, A. E., Jia, H., and Abney, T. S. 2004. Evaluation of soybean differentials for their interaction with Phytophthora sojae. Plant Health Prog. 5. https://doi.org/10.1094/PHP-2004-0309-01-RS LinkGoogle Scholar
    • Dorrance, A. E., Berry, S. A., Anderson, T. R., and Meharg, C. 2008. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Prog. 9. https://doi.org/10.1094/PHP-2008-0118-01-DG LinkGoogle Scholar
    • Dorrance, A. E., Robertson, A. E., Cianzo, S., Giesler, L. J., Grau, C. R., Draper, M. A., Tenuta, A. U., and Anderson, T. R. 2009. Integrated management strategies for Phytophthora sojae combining host resistance and seed treatments. Plant Dis. 93:875-882. https://doi.org/10.1094/PDIS-93-9-0875 Link, ISIGoogle Scholar
    • Ellis, M. L., Broders, K. D., Paul, P. A., and Dorrance, A. E. 2011. Infection of soybean seed by Fusarium graminearum and effect of seed treatments on disease under controlled conditions. Plant Dis. 95:401-407. https://doi.org/10.1094/PDIS-05-10-0317 Link, ISIGoogle Scholar
    • Ellis, M. L., McHale, L. K., Paul, P. A., St. Martin, S. K., and Dorrance, A. E. 2013. Soybean germplasm resistant to Pythium irregulare and molecular mapping of resistance quantitative trait loci derived from the soybean accession PI 424354. Crop Sci. 53:1008-1021. https://doi.org/10.2135/cropsci2012.08.0461 Crossref, ISIGoogle Scholar
    • Grant, D., Nelson, R. T., Cannon, S. B., and Shoemaker, R. C. 2010. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 38:D843-D846. https://doi.org/10.1093/nar/gkp798 Crossref, ISIGoogle Scholar
    • Hebb, L. M., Bradley, C. A., Mideros, S. X., Telenko, D. E., Wise, K., and Dorrance, A. E. 2022. Pathotype complexity and genetic characterization of Phytophthora sojae populations in Illinois, Indiana, Kentucky, and Ohio. Phytopathology 112:663-681. https://doi.org/10.1094/PHYTO-12-20-0561-R Link, ISIGoogle Scholar
    • Huzar-Novakowiski, J., and Dorrance, A. E. 2018. Genetic diversity and population structure of Pythium irregulare from soybean and corn production fields in Ohio. Plant Dis. 102:1989-2000. Link, ISIGoogle Scholar
    • Jiang, Y. N., Haudenshield, J. S., and Hartman, G. L. 2012. Characterization of Pythium spp. from soil samples in Illinois. Can. J. Plant Pathol. 34:448-454. https://doi.org/10.1080/07060661.2012.705326 Crossref, ISIGoogle Scholar
    • Lerch-Olson, E. R., Dorrance, A. E., and Robertson, A. E. 2020. Resistance of the SoyNAM parents to seed and root rot caused by four Pythium species. Plant Dis. 104:2489-2497. https://doi.org/10.1094/PDIS-10-19-2237-RE Link, ISIGoogle Scholar
    • LeRoy, A., and Abney, T. 2007. Registration of ‘CL0J173-6-2’ and ‘CL0J173-6-8’ soybeans. J. Plant Regist. 1:98-99. https://doi.org/10.3198/jpr2006.09.0580crc Crossref, ISIGoogle Scholar
    • Maranna, S., Nataraj, V., Kumawat, G., Chandra, S., Rajesh, V., Ramteke, R., Patel, R. M., Ratnaparkhe, M. B., Husain, S. M., Gupta, S., and Khandekar, N. 2021. Breeding for higher yield, early maturity, wider adaptability and waterlogging tolerance in soybean (Glycine max L.): A case study. Sci. Rep. 11:22853. https://doi.org/10.1038/s41598-021-02064-x Crossref, ISIGoogle Scholar
    • Mian, M. R., McHale, L., Li, Z., and Dorrance, A. E. 2017. Registration of ‘Highpro1’ soybean with high protein and high yield developed from a North × South cross. J. Plant Regist. 11:51-54. https://doi.org/10.3198/jpr2016.03.0013crc Crossref, ISIGoogle Scholar
    • Mideros, S., Nita, M., and Dorrance, A. E. 2007. Characterization of components of partial resistance, Rps2, and root resistance to Phytophthora sojae in soybean. Phytopathology 97:655-662. https://doi.org/10.1094/PHYTO-97-5-0655 Link, ISIGoogle Scholar
    • Molin, C., Ribeiro, N. R., Matusomoto, M. N., Lütkemeyer, A. J., Bordignon, K. B., Ferreira, M. L. B., Barbieri, M., Deuner, C. C., and Huzar-Novakowiski, J. 2021. Seed treatment for controlling damping-off caused by Globisporangium irregulare and Globisporangium ultimum var. sporangiiferum in soybean from southern Brazil. Crop Prot. 149:105782. https://doi.org/10.1016/j.cropro.2021.105782 Crossref, ISIGoogle Scholar
    • Navarro, K. A., Wijeratne, S., Culman, S., Benitez, M.-S., and Dorrance, A. E. 2021. Comparison of the species communities of Phytophthora, Pythium, and Phytopythium associated with soybean genotypes in high disease environments in Ohio. Phytobiomes J. 5:288-304. https://doi.org/10.1094/PBIOMES-12-20-0089-R Link, ISIGoogle Scholar
    • Nelson, R. L., and Johnson, E. O. C. 2006. Registration of soybean germplasm lines LG97-7012, LG98-1445, and LG98-1605. Crop Sci. 46:1822-1824. https://doi.org/10.2135/cropsci2005.07-0221 CrossrefGoogle Scholar
    • Nelson, R. L., and Johnson, E. O. C. 2012. Registration of high-yielding soybean germplasm line LG04-6000. J. Plant Regist. 6:212-215. https://doi.org/10.3198/jpr2011.03.0132crg Crossref, ISIGoogle Scholar
    • Radmer, L., Anderson, G., Malvick, D. M., Kurle, J. E., Rendahl, A., and Mallik, A. 2017. Pythium, Phytophthora, and Phytopythium spp. associated with soybean in Minnesota, their relative aggressiveness on soybean and corn, and their sensitivity to seed treatment fungicides. Plant Dis. 101:62-72. https://doi.org/10.1094/PDIS-02-16-0196-RE Link, ISIGoogle Scholar
    • Rajcan, I., Hou, G., and Weir, A. D. 2005. Advances in breeding of seed-quality traits in soybean. J. Crop Improv. 14:145-174. https://doi.org/10.1300/J411v14n01_07 CrossrefGoogle Scholar
    • Rojas, J. A., Jacobs, J. L., Napieralski, S., Karaj, B., Bradley, C. A., Chase, T., Esker, P. D., Giesler, L. J., Jardine, D. J., Malvick, D. K., Markell, S. G., Nelson, B. D., Robertson, A. E., Rupe, J. C., Smith, D. L., Sweets, L. E., Tenuta, A. U., Wise, K. A., and Chilvers, M. I. 2017. Oomycete species associated with soybean seedlings in North America—Part I: Identification and pathogenicity characterization. Phytopathology 107:280-292. https://doi.org/10.1094/PHYTO-04-16-0177-R Link, ISIGoogle Scholar
    • Scott, K., Balk, C., Veney, D., McHale, L. K., and Dorrance, A. E. 2019. Quantitative disease resistance loci towards Phytophthora sojae and three species of Pythium in six Soybean Nested Association Mapping populations. Crop Sci. 59:605-623. https://doi.org/10.2135/cropsci2018.09.0573 Crossref, ISIGoogle Scholar
    • Scott, K. Eyre, M., McDuffee, D., and Dorrance, A. E. 2020. The efficacy of ethaboxam as a seed treatment towards Phytophthora, Phytopythium, and Pythium in Ohio. Plant Dis. 104:1421-1432. https://doi.org/10.1094/PDIS-09-19-1818-RE Link, ISIGoogle Scholar
    • Song, Q., Yan, L., Quigley, C., Jordan, B. D., Fickus, E., Schroeder, S., Song, B., Charles An, Y.-Q., Hyten, D., Rainey, K., Beavis, W. D., Specht, J., Diers, B., and Cregan, P. 2017. Genetic characterization of the Soybean Nested Association Mapping population. Plant Genome 10. https://doi.org/10.3835/plantgenome2016.10.0109 Crossref, ISIGoogle Scholar
    • Stewart, S., Robertson, A. E., Wickramasinghe, D., Draper, M. A., Michel, A., and Dorrance, A. E. 2016. Population structure among and within Iowa, Missouri, Ohio, and South Dakota populations of Phytophthora sojae. Plant Dis. 100:367-379. https://doi.org/10.1094/PDIS-04-15-0437-RE Link, ISIGoogle Scholar
    • Urrea, K., Rupe, J. C., and Rothrock, C. S. 2013. Effect of fungicide seed treatments, cultivars, and soils on soybean stand establishment. Plant Dis. 97:807-812. https://doi.org/10.1094/PDIS-08-12-0772-RE Link, ISIGoogle Scholar
    • Uzuhashi, S., Tojo, M., and Kakishima, M. 2010. Phylogeny of the genus Pythium and description of new genera. Mycoscience 51:337-365. https://doi.org/10.1007/S10267-010-0046-7 Crossref, ISIGoogle Scholar
    • Vargas, A. L., Paul, P. A., Winger, J., Balk, C., Eyre, M., Clevinger, B., Noggle, S., and Dorrance, A. E. 2022. Oxathiapiprolin alone or mixed with metalaxyl seed treatment for management of soybean seedling diseases caused by species of Phytophthora, Phytopythium, and Pythium. Plant Dis. 106:2127-2137. https://doi.org/10.1094/PDIS-09-21-1952-RE Link, ISIGoogle Scholar
    • Wang, D., Diers, B. W., and Boyse, J. 2006. Registration of ‘Skylla’ soybean. Crop Sci. 46:974-975. https://doi.org/10.2135/cropsci2005.04-0037 Crossref, ISIGoogle Scholar
    • Xavier, A., Jarquin, D., Howard, R., Ramasubramanian, V., Specht, J. E., Graef, G. L., Beavis, W. D., Diers, B. W., Song, Q., Cregan, P. B., Nelson, R., Mian, R., Shannon, J. G., McHale, L., Wang, D., Schapaugh, W., Lorenz, A., Xu, S., Muir, W. M., and Rainey, K. M. 2018. Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population. G3 Genes Genomes Genet. 8:520-529. ISIGoogle Scholar
    • Zitnick-Anderson, K. K., and Nelson, B. D., Jr. 2015. Identification and pathogenicity of Pythium on soybean in North Dakota. Plant Dis. 99:31-38. https://doi.org/10.1094/PDIS-02-14-0161-RE Link, ISIGoogle Scholar