Seedborne Cercospora beticola Can Initiate Cercospora Leaf Spot from Sugar Beet (Beta vulgaris) Fruit Tissue
- Rebecca Spanner1 2
- Jonathan Neubauer1
- Thies M. Heick3
- Michael A. Grusak1
- Olivia Hamilton1 2
- Viviana Rivera-Varas2
- Ronnie de Jonge4
- Sarah Pethybridge5
- Kimberley M. Webb6
- Gerhard Leubner-Metzger7
- Gary A. Secor2
- Melvin D. Bolton1 2 †
- 1Edward T. Schafer Agricultural Research Center, United States Department of Agriculture–Agricultural Research Service, Fargo, ND, U.S.A.
- 2Department of Plant Pathology, North Dakota State University, Fargo, ND, U.S.A.
- 3Institute for Agroecology, Aarhus University, Slagelse, Denmark
- 4Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
- 5Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, U.S.A.
- 6Soil Management and Sugar Beet Research Unit, United States Department of Agriculture–Agricultural Research Service, Fort Collins, CO, U.S.A.
- 7Department of Biological Sciences, Royal Holloway University of London, Egham, U.K.
Abstract
Cercospora leaf spot (CLS) is a globally important disease of sugar beet (Beta vulgaris) caused by the fungus Cercospora beticola. Long-distance movement of C. beticola has been indirectly evidenced in recent population genetic studies, suggesting potential dispersal via seed. Commercial sugar beet “seed” consists of the reproductive fruit (true seed surrounded by maternal pericarp tissue) coated in artificial pellet material. In this study, we confirmed the presence of viable C. beticola in sugar beet fruit for 10 of 37 tested seed lots. All isolates harbored the G143A mutation associated with quinone outside inhibitor resistance, and 32 of 38 isolates had reduced demethylation inhibitor sensitivity (EC50 > 1 µg/ml). Planting of commercial sugar beet seed demonstrated the ability of seedborne inoculum to initiate CLS in sugar beet. C. beticola DNA was detected in DNA isolated from xylem sap, suggesting the vascular system is used to systemically colonize the host. We established nuclear ribosomal internal transcribed spacer region amplicon sequencing using the MinION platform to detect fungi in sugar beet fruit. Fungal sequences from 19 different genera were identified from 11 different sugar beet seed lots, but Fusarium, Alternaria, and Cercospora were consistently the three most dominant taxa, comprising an average of 93% relative read abundance over 11 seed lots. We also present evidence that C. beticola resides in the pericarp of sugar beet fruit rather than the true seed. The presence of seedborne inoculum should be considered when implementing integrated disease management strategies for CLS of sugar beet in the future.
LITERATURE CITED
- 2006. Seedborne fungi detected in sugar beet seeds imported into India during last three decades. Plant Health Prog. 7:2. https://doi.org/10.1094/PHP-2006-1211-01-RS Link, Google Scholar .
- 1966. Dynamics of seed transmission of plant pathogens. Annu. Rev. Phytopathol. 4:311-332. https://doi.org/10.1146/annurev.py.04.090166.001523 Crossref, Google Scholar .
- 2018. A fungal mock community control for amplicon sequencing experiments. Mol. Ecol. Resour. 18:541-556. https://doi.org/10.1111/1755-0998.12760 Crossref, Medline, ISI, Google Scholar .
- 2010. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 10:189. https://doi.org/10.1186/1471-2180-10-189 Crossref, Medline, ISI, Google Scholar .
- 2016. Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION™ portable nanopore sequencer. Gigascience 5:s13742-13016-10111-z. Crossref, ISI, Google Scholar .
- 2017. Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinION™ portable nanopore sequencer. Gigascience 6:gix043. https://doi.org/10.1093/gigascience/gix043 Crossref, ISI, Google Scholar .
- 2012. Characterization of cytochrome b from European field isolates of Cercospora beticola with quinone outside inhibitor resistance. Eur. J. Plant Pathol. 134:475-488. https://doi.org/10.1007/s10658-012-0029-y Crossref, ISI, Google Scholar .
- 2018. Multispectral imaging–A new tool in seed quality assessment? Seed Sci. Res. 28:222-228. https://doi.org/10.1017/S0960258518000235 Crossref, ISI, Google Scholar .
- 2012a. Characterization of CbCyp51 from field isolates of Cercospora beticola. Phytopathology 102:298-305. https://doi.org/10.1094/PHYTO-07-11-0212 Link, ISI, Google Scholar .
- 2013. Identification of the G143A mutation associated with QoI resistance in Cercospora beticola field isolates from Michigan, United States. Pest Manag. Sci. 69:35-39. https://doi.org/10.1002/ps.3358 Crossref, Medline, ISI, Google Scholar .
- 2012b. Evaluation of the potential for sexual reproduction in field populations of Cercospora beticola from USA. Fungal Biol. 116:511-521. https://doi.org/10.1016/j.funbio.2012.01.011 Crossref, Medline, ISI, Google Scholar .
- 1974. Selective medium for the enumeration and isolation of Phoma betae from soil and seed. Phytopathology 64:706-708. https://doi.org/10.1094/Phyto-64-706 Crossref, ISI, Google Scholar .
- 2018. NanoAmpli-Seq: A workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. Gigascience 7:giy140. https://doi.org/10.1093/gigascience/giy140 Crossref, ISI, Google Scholar .
- 1983. Tolerance of organo-tin compounds among Cercospora beticola isolates. Inf. Fitopatol. 33:67-69. Google Scholar .
- 2020. Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION. Sci. Rep. 10:17533. https://doi.org/10.1038/s41598-020-74180-z Crossref, Medline, ISI, Google Scholar .
- 2018. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics 34:2666-2669. https://doi.org/10.1093/bioinformatics/bty149 Crossref, Medline, ISI, Google Scholar .
- 2018. Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum. Proc. Natl. Acad. Sci. USA 115:E5459-E5466. https://doi.org/10.1073/pnas.1712798115 Crossref, Medline, ISI, Google Scholar .
- 2021. Rapid in situ quantification of the strobilurin resistance mutation G143A in the wheat pathogen Blumeria graminis f. sp. tritici. Sci. Rep. 11:4526. https://doi.org/10.1038/s41598-021-83981-9 Crossref, Medline, ISI, Google Scholar .
- 2017. A mini-review on the development and emerging perspectives of seed pathology. Microbiol. Res. Int. 5:1-7. https://doi.org/10.30918/MRI.51.16.020 Crossref, Google Scholar .
- Esau, K. 1967. The Seed. Pages 619-622 in: Plant Anatomy. 2nd Ed. John Wiley & Sons, New York. Google Scholar
- 2019. Identification and characterization of the core rice seed microbiome. Phytobiomes J. 3:148-157. https://doi.org/10.1094/PBIOMES-01-19-0009-R Link, Google Scholar .
- 2004. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. https://evolution.genetics.washington.edu/phylip.html Google Scholar .
- 1883. Ueber einige neue und weniger bekannte Pflanzenkrankheiten. Bot. Acta 1:58-63. Google Scholar .
- 2002. Biological control of cucumber and sugar beet damping‐off caused by Pythium ultimum with bacterial and fungal antagonists. J. Appl. Microbiol. 92:1078-1086. https://doi.org/10.1046/j.1365-2672.2002.01658.x Crossref, Medline, ISI, Google Scholar .
- 2018. Emerging pathogens as a consequence of globalization and climate change: Leafy vegetables as a case study. Phytopathol. Mediterr. 57:146-152. ISI, Google Scholar .
- 2005. Distinct species exist within the Cercospora apii morphotype. Phytopathology 95:951-959. https://doi.org/10.1094/PHYTO-95-0951 Link, ISI, Google Scholar .
- 2006. Mating type gene analysis in apparently asexual Cercospora species is suggestive of cryptic sex. Fungal Genet. Biol. 43:813-825. https://doi.org/10.1016/j.fgb.2006.05.008 Crossref, Medline, ISI, Google Scholar .
- 2008. Indirect evidence for sexual reproduction in Cercospora beticola populations from sugar beet. Plant Pathol. 57:25-32. ISI, Google Scholar .
- 2019. Ready-to-eat salad crops: A plant pathogen’s heaven. Plant Dis. 103:2153-2170. https://doi.org/10.1094/PDIS-03-19-0472-FE Link, ISI, Google Scholar .
- 1985. A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathol. 34:557-565. https://doi.org/10.1111/j.1365-3059.1985.tb01407.x Crossref, ISI, Google Scholar .
- 2015. Stemphylium sp., the cause of yellow leaf spot disease in sugar beet (Beta vulgaris L.) in the Netherlands. Eur. J. Plant Pathol. 142:319-330. https://doi.org/10.1007/s10658-015-0617-8 Crossref, ISI, Google Scholar .
- Harveson, R. M., Hanson, L. E., and Hein, G. L., eds. 2009. Compendium of beet diseases and pests. American Phytopathological Society, St. Paul, MN. https://doi.org/10.1094/9780890546598 Link, Google Scholar
- 2014. Evidence for seed transmission and symptomless growth of Ramularia collo‐cygni in barley (Hordeum vulgare). Plant Pathol. 63:929-936. https://doi.org/10.1111/ppa.12162 Crossref, ISI, Google Scholar .
- 2007. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): A comparative study of fruits and seeds. J. Exp. Bot. 58:3047-3060. https://doi.org/10.1093/jxb/erm162 Crossref, Medline, ISI, Google Scholar .
- 2019. Pathogen detection and microbiome analysis of infected wheat using a portable DNA sequencer. Phytobiomes J. 3:92-101. https://doi.org/10.1094/PBIOMES-01-19-0004-R Link, Google Scholar .
- 2020. Effects of continuous sugar beet cropping on rhizospheric microbial communities. Genes (Basel) 11:13. https://doi.org/10.3390/genes11010013 Crossref, ISI, Google Scholar .
- 2013. The emerging world of the fungal microbiome. Trends Microbiol. 21:334-341. https://doi.org/10.1016/j.tim.2013.04.002 Crossref, Medline, ISI, Google Scholar .
- 2019. The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet. Planta 250:1717-1729. https://doi.org/10.1007/s00425-019-03257-5 Crossref, Medline, ISI, Google Scholar .
- 2019. Catch me if you can-On the track of the Cercospora spores. Zuckerindustrie 144:730-738. ISI, Google Scholar .
- 2009.
Cercospora leaf spot . Pages 7-10 in: Compendium of Beet Diseases and Pests. 2nd ed. R. M. Harveson, L. E. Hanson, and G. L. Hein, eds. American Phytopathological Society, St. Paul, MN. Google Scholar . - 2017. MinION analysis and reference consortium: Phase 2 data release and analysis of R9. 0 chemistry. F1000 Res. 6:760. https://doi.org/10.12688/f1000research.11354.1 Crossref, Medline, Google Scholar .
- 2015. What’s in my pot? Real-time species identification on the MinION™. bioRxiv:030742. https://www.biorxiv.org/content/10.1101/030742v1 Google Scholar .
- 2000. First report of verticillium wilt of sugar beet, caused by Verticillium dahliae, in Greece. Plant Dis. 84:593-593. https://doi.org/10.1094/PDIS.2000.84.5.593C Link, Google Scholar .
- 2001. Fitness of Cercospora beticola field isolates–resistant and sensitive to demethylation inhibitor fungicides. Eur. J. Plant Pathol. 107:337-347. https://doi.org/10.1023/A:1011219514343 Crossref, ISI, Google Scholar .
- 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30:772-780. https://doi.org/10.1093/molbev/mst010 Crossref, Medline, ISI, Google Scholar .
- 2017. Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5:116. https://doi.org/10.1186/s40168-017-0336-9 Crossref, Medline, ISI, Google Scholar .
- 2008. Survival, dispersal, and primary infection site for Cercospora beticola in sugar beet. Plant Dis. 92:741-745. https://doi.org/10.1094/PDIS-92-5-0741 Link, ISI, Google Scholar .
- 2015. Bacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer. Gigascience 4:12. https://doi.org/10.1186/s13742-015-0051-z Crossref, Medline, ISI, Google Scholar .
- 2020. Detection of Cercospora beticola and Phoma betae on table beet seed using quantitative PCR. Phytopathology 110:943-951. https://doi.org/10.1094/PHYTO-11-19-0412-R Link, ISI, Google Scholar .
- 2020. An improved PCR assay for species-specific detection and quantification of Cercospora beticola. Can. J. Plant Pathol. 42:72-83. https://doi.org/10.1080/07060661.2019.1621380 Crossref, ISI, Google Scholar .
- 2018. Temporal genetic differentiation of Cercospora beticola populations in New York table beet fields. Plant Dis. 102:2074-2082. https://doi.org/10.1094/PDIS-01-18-0175-RE Link, ISI, Google Scholar .
- 2019a. Genetic diversity and structure in regional Cercospora beticola populations from Beta vulgaris subsp. vulgaris suggest two clusters of separate origin. Phytopathology 109:1280-1292. https://doi.org/10.1094/PHYTO-07-18-0264-R Link, ISI, Google Scholar .
- 2019b. Alternative hosts of Cercospora beticola in field surveys and inoculation trials. Plant Dis. 103:1983-1990. https://doi.org/10.1094/PDIS-01-19-0229-RE Link, ISI, Google Scholar .
- 2006.
Seed production and quality . Pages: 89-113 in Sugar Beet. A. P. Draycott, ed. Blackwell Publishing, Oxford, U.K. https://doi.org/10.1002/9780470751114.ch5 Crossref, Google Scholar . - 2010. Seed production and processing. Sugar Tech 12:267-275. https://doi.org/10.1007/s12355-010-0039-z Crossref, ISI, Google Scholar .
- 1984. Mycoflora of sugar beet seeds. Acta Mycol. 20:219-224. https://doi.org/10.5586/am.1984.017 Crossref, Google Scholar .
- Kumar, R. and Gupta, A., eds. 2020. Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer, Singapore. https://doi.org/10.1007/978-981-32-9046-4 Crossref, Google Scholar
- 2013. Seqtk: A fast and lightweight tool for processing FASTA or FASTQ sequences. https://github.com/lh3/seqtk Google Scholar .
- 2019. Relative performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) third-generation sequencing instruments in identification of agricultural and forest fungal pathogens. J. Appl. Environ. Microbiol. 85:e01368-19. https://doi.org/10.1128/AEM.01368-19 Crossref, Medline, ISI, Google Scholar .
- Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D., and Dangl, J. L. 2013. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10:999-1002. Google Scholar
- 2019. A rapid approach to profiling diverse fungal communities using the MinION™ nanopore sequencer. Biotechniques 68:72-78. https://doi.org/10.2144/btn-2019-0072 Crossref, Medline, ISI, Google Scholar .
- 2016. Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathol. 65:691-703. https://doi.org/10.1111/ppa.12515 Crossref, ISI, Google Scholar .
- 2014. Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag. Sci. 70:860-868. https://doi.org/10.1002/ps.3693 Crossref, Medline, ISI, Google Scholar .
- 2013. Colonization of spinach by Verticillium dahliae and effects of pathogen localization on the efficacy of seed treatments. Phytopathology 103:268-280. https://doi.org/10.1094/PHYTO-05-12-0104-R Link, ISI, Google Scholar .
- 2011. Impact of the seed-borne stage of Ramularia collo-cygni in barley seed. J. Plant Pathol. 93:679-689. ISI, Google Scholar .
- 2003. Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 59:129-142. https://doi.org/10.1002/ps.575 Crossref, Medline, ISI, Google Scholar .
- 1954. An Alternaria leaf spot of the sugar beet. J. Am. Soc. Sugarbeet Technol. 8:241-245. Google Scholar .
- 1995. Epidemiological approach to disease management through seed technology. Annu. Rev. Phytopathol. 33:445-466. https://doi.org/10.1146/annurev.py.33.090195.002305 Crossref, Medline, ISI, Google Scholar .
- 1918. Field studies of Cercospora beticola. Phytopathology 8:119-136. ISI, Google Scholar .
- 2009. Seed pathology progress in academia and industry. Annu. Rev. Phytopathol. 47:285-311. https://doi.org/10.1146/annurev-phyto-080508-081916 Crossref, Medline, ISI, Google Scholar .
- 1945. Epiphytology and control of sugar beet leaf spot caused by Cercospora beticola Sacc. Iowa Agric. Home Econ. Experiment Stn. Res. Bull. 27:1. Google Scholar .
- 2009. Importance of seed-borne infection of Ramularia collo-cygni. Asp. Appl. Biol. 92:91-96. Google Scholar .
- 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7:103-116. https://doi.org/10.1006/mpev.1996.0376 Crossref, Medline, ISI, Google Scholar .
- 2011. Multispectral imaging as a potential tool for seed health testing of spinach (Spinacia oleracea L.). Seed Sci. Technol. 39:140-150. https://doi.org/10.15258/sst.2011.39.1.12 Crossref, ISI, Google Scholar .
- 1989. Dynamics of sugar beet seed colonization by Pythium ultimum and Pseudomonas species: Effects on seed rot and damping-off. Phytopathology 79:709-716. https://doi.org/10.1094/Phyto-79-709 Crossref, ISI, Google Scholar .
- 2020. Rapid diagnosis of biological colonization in cultural artefacts using the MinION nanopore sequencing technology. Int. Biodeterior. Biodegradation 148:104908. https://doi.org/10.1016/j.ibiod.2020.104908 Crossref, ISI, Google Scholar .
- 1916. Climatic conditions as related to Cercospora beticola. J. Agric. Res. 6:21-60. Google Scholar .
- 2016. Changes in the species composition of the rhizosphere and phyllosphere of sugar beet under the impact of biological preparations based on endophytic bacteria and their metabolites. Eur. Soil Sci. 49:1136-1144. https://doi.org/10.1134/S1064229316100112 Crossref, ISI, Google Scholar .
R Core Team . 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Google Scholar- 2018. From squiggle to basepair: Computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 19:90. https://doi.org/10.1186/s13059-018-1462-9 Crossref, Medline, ISI, Google Scholar .
- 2020. Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Mol. Plant Pathol. 21:1020-1041. https://doi.org/10.1111/mpp.12962 Crossref, Medline, ISI, Google Scholar .
- 2000. EMBOSS: The European molecular biology open software suite. Trends Genet. 16:276-277. https://doi.org/10.1016/S0168-9525(00)02024-2 Crossref, Medline, ISI, Google Scholar .
- 1990. An Annotated List of Seed-Borne Diseases, 4th ed. International Seed Testing Association, Zurich, Switzerland. Google Scholar .
- 1968. An Annotated List of Seed-Borne Diseases, 2nd ed. Commonwealth Mycological Institute, London. Google Scholar .
- Satoh, S., Iizuka, C., Kikuchi, A., Nakamura, N., and Fujii, T. 1992. Proteins and carbohydrates in xylem sap from squash root. Plant Cell Physiol. 33:841-847. Google Scholar
- 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541. https://doi.org/10.1128/AEM.01541-09 Crossref, Medline, ISI, Google Scholar .
- 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 109:6241-6246. https://doi.org/10.1073/pnas.1117018109 Crossref, Medline, ISI, Google Scholar .
- 1952. Ein Beitrag zur Frage der Bedeutung der Sameninfektion durch Cercospora beticola. Zucker 13:7. Google Scholar .
- 2012.
Fungicide resistance assays for fungal plant pathogens . Pages 385-392 in: Plant Fungal Pathogens. Springer. https://doi.org/10.1007/978-1-61779-501-5_23 Crossref, Google Scholar . - 2010. Monitoring fungicide sensitivity of Cercospora beticola of sugar beet for disease management decisions. Plant Dis. 94:1272-1282. https://doi.org/10.1094/PDIS-07-09-0471 Link, ISI, Google Scholar .
- 2014. Characterization of Fusarium secorum, a new species causing Fusarium yellowing decline of sugar beet in north central USA. Fungal Biol. 118:764-775. https://doi.org/10.1016/j.funbio.2014.06.001 Crossref, Medline, ISI, Google Scholar .
- 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582-586. https://doi.org/10.1038/nature02880 Crossref, Medline, ISI, Google Scholar .
- 1992. Impact of Cercospora leaf spot on root weight, sugar yield, and purity of Beta vulgaris. Plant Dis. 76:812-820. https://doi.org/10.1094/PD-76-0812 Crossref, ISI, Google Scholar .
- 2020. Rapid detection of Cercospora beticola in sugar beet and mutations associated with fungicide resistance using LAMP or probe-based qPCR. Plant Dis. 104:1654-1661. https://doi.org/10.1094/PDIS-09-19-2023-RE Link, ISI, Google Scholar .
- 1974. Seed mycoflora of sugarbeet (Beta vulgaris L.) and its fungicidal control. Proc. Indian Natl. Sci. Acad. Part B Biol. Sci. 39:695-700. Google Scholar .
- 1996. Association between resistance to Cercospora and yield in commercial sugarbeet hybrids. Plant Breed. 115:28-32. https://doi.org/10.1111/j.1439-0523.1996.tb00866.x Crossref, ISI, Google Scholar .
- 1971. Cercospora leaf spot as a predisposing factor in storage rot of sugar beet roots. Phytopathology 61:1485-1487. https://doi.org/10.1094/Phyto-61-1485 Crossref, ISI, Google Scholar .
- 2008. Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl. Environ. Microbiol. 74:823-832. https://doi.org/10.1128/AEM.01165-07 Crossref, Medline, ISI, Google Scholar .
- 1990. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 28:321-339. https://doi.org/10.1146/annurev.py.28.090190.001541 Crossref, ISI, Google Scholar .
- 2016. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl. Environ. Microbiol. 82:7217-7226. https://doi.org/10.1128/AEM.02576-16 Crossref, Medline, ISI, Google Scholar .
- 1993. Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant Soil 150:177-191. https://doi.org/10.1007/BF00013015 Crossref, ISI, Google Scholar .
- 2017a. Global genotype flow in Cercospora beticola populations confirmed through genotyping-by-sequencing. PLoS One 12:e0186488. https://doi.org/10.1371/journal.pone.0186488 Crossref, Medline, ISI, Google Scholar .
- 2017b. De novo genome assembly of Cercospora beticola for microsatellite marker development and validation. Fungal Ecol. 26:125-134. https://doi.org/10.1016/j.funeco.2017.01.006 Crossref, ISI, Google Scholar .
- 2017c. Genetic structure of Cercospora beticola populations on Beta vulgaris in New York and Hawaii. Sci. Rep. 7:1726. https://doi.org/10.1038/s41598-017-01929-4 Crossref, Medline, ISI, Google Scholar .
- 2019. Genome resource for Neocamarosporium betae (syn. Pleospora betae), the cause of Phoma leaf spot and root rot on Beta vulgaris. Mol. Plant-Microbe Interact. 32:787-789. https://doi.org/10.1094/MPMI-12-18-0334-A Link, ISI, Google Scholar .
- 2004. Possible root infection of Cercospora beticola in sugar beet. Eur. J. Plant Pathol. 110:103-106. https://doi.org/10.1023/B:EJPP.0000010130.38700.88 Crossref, ISI, Google Scholar .
- 2007. Epidemiology of Cercospora leaf spot on sugar beet: Modeling disease dynamics within and between individual plants. Phytopathology 97:1550-1557. https://doi.org/10.1094/PHYTO-97-12-1550 Link, ISI, Google Scholar .
- 2005. Root infection of sugar beet by Cercospora beticola in a climate chamber and in the field. Eur. J. Plant Pathol. 112:201-210. https://doi.org/10.1007/s10658-004-4172-y Crossref, ISI, Google Scholar .
- 2018. New generation of resistant sugar beet varieties for advanced integrated management of Cercospora leaf spot in central Europe. Front. Plant Sci. 9:222. https://doi.org/10.3389/fpls.2018.00222 Crossref, Medline, ISI, Google Scholar .
- 2019. Phylogenetic relationships and virulence assays of Fusarium secorum from sugar beet suggest a new look at species designations. Plant Pathol. 68:1654-1662. https://doi.org/10.1111/ppa.13082 Crossref, ISI, Google Scholar .
- 2011. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3:180-185. https://doi.org/10.1002/wics.147 Crossref, Google Scholar .
- 2008. Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microb. Ecol. 55:119-129. https://doi.org/10.1007/s00248-007-9257-7 Crossref, Medline, ISI, Google Scholar .