Influence of Sweetpotato Resistance on the Development of Meloidogyne enterolobii and M. incognita
- David Galo
- Josielle Santos Rezende
- Tristan T. Watson †
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A.
Abstract
Meloidogyne enterolobii and M. incognita are major pests of sweetpotato. The ability of M. enterolobii to cause symptoms and reproduce on nematode-resistant cultivars threatens the sweetpotato industry. To evaluate the penetration, development, and reproduction of M. enterolobii and M. incognita on sweetpotato, a time-course study was conducted using the genotypes LA14-31 (resistant to M. enterolobii and intermediately resistant to M. incognita), LA18-100 (susceptible to M. enterolobii and resistant to M. incognita), and LA19-65 (resistant to M. enterolobii and susceptible to M. incognita), with ‘Beauregard’ (susceptible to both species) and ‘Jewel’ (resistant to M. enterolobii and intermediately resistant to M. incognita) as controls. Sweetpotato roots were collected at 7, 9, 11, 13, 21, and 35 days postinoculation (DPI), stained with acid fuchsin, and analyzed for nematode developmental stages. Nematode reproduction was evaluated by examining egg production at 42 DPI. The results showed that M. enterolobii developed and reproduced only in Beauregard and LA18-100. In resistant genotypes such as Jewel, LA14-31, and LA19-65, M. enterolobii remained at the pre-parasitic J2 stage, with halted development linked to localized cell death in response to M. enterolobii penetration. For M. incognita, the defense response was most notable in LA18-100, where infective juveniles either died, matured as males, or experienced delayed development into adult females, with a marked reduction in M. incognita reproduction. These findings suggest that resistance to M. enterolobii likely involves a hypersensitive-like response that prevents feeding site establishment, whereas resistance to M. incognita appears quantitative, as evidenced by delayed nematode development and reduced reproduction in resistant genotypes.
Literature Cited
- 2004. Abiotic factors. Pages 309-343 in: Nematode Behaviour. CABI Publishing, Wallingford, U.K. https://doi.org/10.1079/9780851998183.0309 CrossrefGoogle Scholar
- 2020. Reproduction of Meloidogyne enterolobii on selected root-knot nematode resistant sweetpotato (Ipomoea batatas) cultivars. J. Nematol. 52:1-6. https://doi.org/10.21307/jofnem-2020-063 CrossrefWeb of ScienceGoogle Scholar
- 1983. An improved technique for clearing and staining plant tissues for detection of nematodes. J. Nematol. 15:142. MedlineWeb of ScienceGoogle Scholar
- 2012. Meloidogyne enterolobii (= M. mayaguensis): Profile of an emerging, highly pathogenic, root-knot nematode species. Nematology 14:133-138. https://doi.org/10.1163/156854111X601650 CrossrefWeb of ScienceGoogle Scholar
- 2008. Detection of quantitative trait loci and inheritance of root-knot nematode resistance in sweetpotato. HortScience 133:844-851. https://doi.org/10.21273/JASHS.133.6.844 Google Scholar
- 2009. Hatch and host location. Pages 139-162 in: Root-Knot Nematodes. CABI Digital Library. https://doi.org/10.1079/9781845934927.0139 CrossrefGoogle Scholar
- 2008. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J. Exp. Bot. 59:1305-1313. https://doi.org/10.1093/jxb/ern036 CrossrefMedlineWeb of ScienceGoogle Scholar
- 2019. Resistance quantitative trait loci qMi-C11 and qMi-C14 in cotton have different effects on the development of Meloidogyne incognita, the southern root-knot nematode. Plant Dis. 103:853-858. https://doi.org/10.1094/PDIS-06-18-1050-RE LinkWeb of ScienceGoogle Scholar
- 2006. Root-knot nematode management in double-cropped plasticulture vegetables. J. Nematol. 38:59-67. MedlineWeb of ScienceGoogle Scholar
- 2013. Penetration, post-penetration development, and reproduction of Meloidogyne incognita on Cucumis melo var. texanus. J. Nematol. 45:58. MedlineWeb of ScienceGoogle Scholar
FAO . 2020. World Food and Agriculture-Statistical Yearbook 2020. Food and Agriculture Organization of the United Nations. Google Scholar- 2024. Discovery of a major QTL for resistance to the guava root-knot nematode (Meloidogyne enterolobii) in ‘Tanzania’, an African landrace sweetpotato (Ipomoea batatas). Theor. Appl. Genet. 137:234. https://doi.org/10.1007/s00122-024-04739-1 CrossrefMedlineWeb of ScienceGoogle Scholar
- 2008. Nematode resistance. New Phytol. 180:27-44. https://doi.org/10.1111/j.1469-8137.2008.02508.x CrossrefMedlineWeb of ScienceGoogle Scholar
- 2024. Identification of combined resistance to Meloidogyne enterolobii and M. incognita in sweetpotato genotypes. Plant Dis. 108:3092-3096. https://doi.org/10.1094/PDIS-03-24-0650-RE LinkWeb of ScienceGoogle Scholar
- 1887. Relatório sôbre a molestia do cafeiro na provincial da Rio de Janeiro. Arch. Mus. Nac. Rio de Janeiro 8:1-112. Google Scholar
- 2024. Genetic variations underlying root-knot nematode resistance in sweetpotato. Gene 931:148895. https://doi.org/10.1016/j.gene.2024.148895 CrossrefMedlineWeb of ScienceGoogle Scholar
- 2000. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. U.S.A. 97:8849-8855. https://doi.org/10.1073/pnas.97.16.8849 CrossrefMedlineWeb of ScienceGoogle Scholar
- 2006. Resistance to two races of Meloidogyne incognita and resistance mechanism in diploid Ipomoea trifida. Breed. Sci. 56:81-83. https://doi.org/10.1270/jsbbs.56.81 CrossrefWeb of ScienceGoogle Scholar
- 2024. ‘Avoyelles’ sweetpotato. HortScience 59:796-798. https://doi.org/10.21273/HORTSCI17802-24 CrossrefWeb of ScienceGoogle Scholar
- 2008a. ‘Murasaki-29’ sweetpotato. HortScience 43:1895-1896. https://doi.org/10.21273/HORTSCI.43.6.1895 CrossrefWeb of ScienceGoogle Scholar
- 2008b. ‘Evangeline’ sweetpotato. HortScience 43:258-259. https://doi.org/10.21273/HORTSCI.43.1.258 CrossrefWeb of ScienceGoogle Scholar
- 2009. The Sweetpotato. Springer Sciences Business Media BV. https://doi.org/10.1007/978-1-4020-9475-0 CrossrefGoogle Scholar (eds.)
- 2016. Histological characterization of resistance to Meloidogyne incognita in Avena sativa. Trop. Plant Pathol. 41:203-209. https://doi.org/10.1007/s40858-016-0088-2 CrossrefWeb of ScienceGoogle Scholar
- 2006. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato−root-knot nematode interactions. New Phytol. 170:501-512. https://doi.org/10.1111/j.1469-8137.2006.01724.x CrossrefMedlineWeb of ScienceGoogle Scholar
- 2022. Sweetpotato genotypes ‘CIP BRS Nuti’ and ‘Canadense’ are resistant to Meloidogyne incognita, M. javanica, and M. enterolobii. Plant Dis. 106:1238-1243. https://doi.org/10.1094/PDIS-06-21-1194-RE LinkWeb of ScienceGoogle Scholar
- 2021. Discovery of a major QTL for root-knot nematode (Meloidogyne incognita) resistance in cultivated sweetpotato (Ipomoea batatas). Theor. Appl. Genet. 134:1945-1955. https://doi.org/10.1007/s00122-021-03797-z CrossrefMedlineWeb of ScienceGoogle Scholar
- 1996. Penetration and post-infectional development and reproduction of Meloidogyne arenaria races 1 and 2 on susceptible and resistant soybean genotypes. J. Nematol. 28:343. MedlineWeb of ScienceGoogle Scholar
- 2005. Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology 95:158-165. https://doi.org/10.1094/PHYTO-95-0158 LinkWeb of ScienceGoogle Scholar
- 2009. Root-Knot Nematodes. CABI, Wallingford, U.K. CrossrefGoogle Scholar (eds.)
- 2018. A hypersensitivity-like response to Meloidogyne graminicola in rice (Oryza sativa). Phytopathology 108:521-528. https://doi.org/10.1094/PHYTO-07-17-0235-R LinkWeb of ScienceGoogle Scholar
- 1999. Effects of temperature on the duration of the life cycle of a Meloidogyne incognita population. Nematology 1:389-393. https://doi.org/10.1163/156854199508388 CrossrefWeb of ScienceGoogle Scholar
- 2021. Identification of sweet potato germplasm resistant to pathotypically distinct isolates of Meloidogyne enterolobii from the Carolinas. Plant Dis. 105:3147-3153. https://doi.org/10.1094/PDIS-02-20-0379-RE LinkWeb of ScienceGoogle Scholar
- 2022. Interception of Meloidogyne enterolobii on sweetpotato in Louisiana. Nematropica 52:1-5. Google Scholar
- 2021. Screening sweetpotato genotypes for resistance to a North Carolina isolate of Meloidogyne enterolobii. Plant Dis. 105:1101-1107. https://doi.org/10.1094/PDIS-02-20-0389-RE LinkWeb of ScienceGoogle Scholar
- 2014. Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection. Sci. Signal. 7:ra33. https://doi.org/10.1126/scisignal.2004777 CrossrefMedlineWeb of ScienceGoogle Scholar
- 2009. Development of resistant varieties. Pages 326-337 in: Root-Knot Nematodes. CABI, Wallingford, U.K. https://doi.org/10.1079/9781845934927.0326 CrossrefGoogle Scholar
- 1963. A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method. Nematologica 9:106-110. https://doi.org/10.1163/187529263X00205 CrossrefGoogle Scholar
- 1973. Environmental sex differentiation of nematodes in relation to pest management. Annu. Rev. Phytopathol. 11:441-462. https://doi.org/10.1146/annurev.py.11.090173.002301 CrossrefWeb of ScienceGoogle Scholar
- 2014. Thermal time requirements of root-knot nematodes on zucchini-squash and population dynamics with associated yield losses on spring and autumn cropping cycles. Eur. J. Plant Pathol. 140:481-490. https://doi.org/10.1007/s10658-014-0482-x CrossrefWeb of ScienceGoogle Scholar
- 2022. Temperature effects on development of Meloidogyne enterolobii and M. floridensis. J. Nematol. 54:20220013. https://doi.org/10.2478/jofnem-2022-0013 CrossrefMedlineWeb of ScienceGoogle Scholar
- 1998. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat. Biotechnol. 16:1365-1369. https://doi.org/10.1038/4350 CrossrefMedlineWeb of ScienceGoogle Scholar
- 2009. Mechanisms and genetics of resistance. Pages 301-325 in: Root-Knot Nematodes. CABI, Wallingford, U.K. https://doi.org/10.1079/9781845934927.0301 CrossrefGoogle Scholar
- 2017. Histopathology combined with transcriptome analyses reveals the mechanism of resistance to Meloidogyne incognita in Cucumis metuliferus. J. Plant Physiol. 212:115-124. https://doi.org/10.1016/j.jplph.2017.02.002 CrossrefMedlineWeb of ScienceGoogle Scholar
- 2008. ‘Covington’ sweetpotato. HortScience 43:1911-1914. https://doi.org/10.21273/HORTSCI.43.6.1911 CrossrefWeb of ScienceGoogle Scholar