De novo Cortical Cell Division Triggered by the Phytopathogen Rhodococcus fascians in Tobacco

Carmem-Lara de O. Manes,1 Marc Van Montagu,1 Els Prinsen,2 Koen Goethals,1 and Marcelle Holsters1

1Vakgroep Moleculaire Genetica & Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, B-9000 Gent, Belgium; 2Departement Biologie, Universitaire Instelling Antwerpen, B-2610 Antwerpen, Belgium

Accepted 18 October 2000.

Plant growth, development, and morphology can be affected by several environmental stimuli and by specific interactions with phytopathogens. In many cases, plants respond to pathogenic stimuli by adapting their hormone levels. Here, the interaction between the phytopathogen Rhodococcus fascians and one of its host plants, tobacco, was analyzed phenotypically and molecularly. To elucidate the basis of the cell division modulation and shoot primordia initiation caused by R. fascians, tobacco plants were infected at leaf axils and shoot apices. Adventitious meristems that gave rise to multiple-shoot primordia (leafy galls) were formed. The use of a transgenic line carrying the mitotic CycB1 promoter fused to the reporter gene coding for β-glucuronidase from Escherichia coli (uidA), revealed that stem cortical cells were stimulated to divide in an initial phase of the leafy gall ontogenesis. Local cytokinin and auxin levels throughout the infection process as well as modulation of expression of the cell cycle regulator gene Nicta;CycD3;2 are discussed.

Additional keywords: cyclinD3; epiphylly; phytohormones.

The phytopathogenic gram-positive bacterium Rhodococcus fascians infects a wide range of monocotyledonous and dicotyledonous plants causing several types of malformations. A 200-kb linear plasmid is responsible for pathogenicity and contains virulence genes, one of which codes for an isopentenyl transferase (IPT) homolog that is putatively involved in cytokinin biosynthesis (Crespi et al. 1992).

The effects caused by R. fascians vary from a fasciated phenotype to the initiation of multiple-shoot primordia accompanied by the suppression of shoot outgrowth, resulting in a leafy gall. The phenotypes depend on the host and the age of the plant as well as on the inoculation method and site of infection. Nicotiana tabacum (L.) and Arabidopsis thaliana (L.) Heynh. were used as model plants to investigate morphological aspects of R. fascians infection. When tobacco plants are decapitated and infected, multiple lateral shoots are formed at the site of the wounding that give rise to a leafy gall (Vereecke et al. 2000). Morphological changes observed after vacuum infiltration of A. thaliana include increased number of flowers, early flowering, outgrowth of axillary meristems, overall stunted phenotype as well as abnormal flower formation, and altered leaf shape (T. M. Ritsema, C.-L. de O. Manes, K. Goethals, and M. Holsters, unpublished).

Plant morphogenesis relies essentially on cell division and expansion because plant cells do not migrate. In mature plants, cell division is restricted to meristematic regions. Shoot and root meristems show specific patterns of cell division that are controlled genetically (Meyerowitz 1997). Nevertheless, most plant cells are capable of changing their fate in response to appropriate stimuli. Cell division patterns and rates are affected by different factors such as temperature, nutrient and water availability, and pathogen attack (Ben-Haj-Salah and Tardieu 1995; Dudley et al. 1987; Gastal and Nelson 1994; Sacks et al. 1997).

Recently, many efforts were made to obtain a clear picture of the eukaryotic cell cycle machinery and its regulation. Cell cycle progression can be arrested at different phases and activated through the induction of regulatory proteins. The key components are the cyclins and the cyclin-dependent kinases (CDKs). Cell division is regulated by the activation of CDKs through the binding of cyclins. In plants, several genes that encode cell-cycle regulators have been isolated, and their expression pattern and/or associated protein activity investigated (Mironov et al. 1999). Several studies demonstrated that nutrients, cytokinins, and auxins up regulate D-type cyclins and A-type CDK transcripts (Carle et al. 1998; De Veylder et al. 1999; Fuerst et al. 1996; Tréhin et al. 1998). Additionally, endogenous cytokinin, in particular zeatin, is required for cell cycle progression in BY2-cultured cells (Laureys et al. 1998; Redig et al. 1996). Recently, Riou-Khamlichi et al. (1999) observed that the CycD1 transcript is up regulated by zeatin and its overexpression triggers the formation of cytokinin-independent calluses. In addition to a role in cell division, cytokinins interfere in cell expansion, releasing axillary bud dormancy and delaying leaf senescence. Altered endogenous cytokinin levels and their relation to morphological changes have been investigated extensively by the genetic engineering of different plant species (Li et al. 1992; McKenzie et al.

Corresponding author: M. Holsters; E-mail: mahol@gengenp.rug.ac.be

Fax: +32 9 2645349
out the infection process as well as the modulation of cell-cycle gene expression are evaluated and discussed.

RESULTS

Spot inoculation assay.

Different methods were used to infect host plants with \textit{R. fascians} such as decapitation site infection, vacuum infiltration, and watering (Vereecke et al. 2000). The symptoms displayed by the infected plants were not homogeneous and, except...
Fig. 2. CycB1;1 promoter activity and microscopic analysis of a tobacco transgenic line spot-inoculated with Rhodococcus fascians. A and B, GUS expression indicates dividing cells (arrows) after inoculation of leaf axils. C, Longitudinal sections of an inoculated axil show mitotic centers and a shoot primordium originating from the outer cortical cells of the stem. D, Details from cortical cell division initiation. E and F, Shoot primordium formation. G, Overview of cortical cells from a spot-inoculated plant. H, Noninfected cortical cells. C = cortex; E = epidermis; MC = mitotic center; SP = shoot primordium; V = vascular tissue. Bars = 200 µm (C, G, and H) and 50 µm (D to F).
for decapitated plants, these methods were not adequate to obtain localized responses. To avoid the above-mentioned drawbacks, a localized, nondamaging infection method was developed. Leaf axils of tobacco plants were inoculated with a droplet of a log-phase culture of \textit{R. fascians}. After 1 week, these areas invariably formed meristem initials that developed into a leafy gall 4 weeks later (Fig. 1A and B). No positional preference from which axil (younger-older) responded to spot inoculation was observed. Spot inoculation also was performed on the leaf blade and the shoot apex. Invariably, when the shoot apex was infected, developing leaves displayed epiphyllous shoots along the vasculature and sometimes at the margins (Fig. 1C and D). For the leaf blade spot inoculation, the frequency of responses varied according to the developmental stage and spotting site. Young leaves responded better, and infection at the leaf pedicel and midrib produced more reproducible responses, leading to activation of adventitious meristems (Fig. 1E) and leafy gall formation (Fig. 1F).

\textit{R. fascians} colonizes the surface and internal spaces of the leaf tissue, but colonization is not always related to symptom development because virulent and nonvirulent strains have comparable surface-colonization capacities (K. Cornelis, T., Ritsema, J., Nijssse, M., Holsters, K., Goethals, and M. El Jaziri, unpublished). Scanning electron microscopy was performed on the infected tissues to investigate whether newly formed structures contained bacteria. Invariably, in the vicinity of leaf bladeborne shoots, scattered bacterial clusters were found but occurred rarely on the newly formed shoots themselves (Fig. 1G and H). The same observation was made when petiole and stem-derived adventitious shoots were analyzed. Therefore, we can suggest that shoot primordia formation is restricted to colonization sites.

\textbf{From cortical cell division to leafy gall ontogenesis.}

Morphological analysis of tobacco plants infected by \textit{R. fascians} suggests that cell division and expansion are affected. To observe the first events induced by \textit{R. fascians}, a transgenic line of tobacco carrying the mitotic \textit{CycB1;1} promoter-gus fusion was used (Ferreira et al. 1994). The \textit{CycB1;1} promoter is active at the G2-to-M transition and during mitosis (Shaul et al. 1996). Segments of stems comprising infected areas were harvested 1, 3, 5, 7, and 14 days after spot inoculation at leaf axils. The first visible symptom was a thickening of the stem 4 days after infection. Actively dividing cells, as shown by GUS staining, appeared 4 to 7 days after infection (Fig. 2A and B). Serial, longitudinal thin sections were stained and scored for the presence of mitotic figures and early cell-division events. At day 1 and 3 after infection, no major morphological changes were found in infected tissues compared with noninfected tissues or tissues infected with an nonvirulent strain of \textit{R. fascians}. Seven days postinoculation, mitotic figures were observed in the outer cortical cells of stems infected with wild-type bacteria (Fig. 2C to E). In this case, cell-division events always correlated with a faint GUS staining in the ultrathin sections. The dividing cells were reoriented to form a shoot meristem that developed a leaf primordium and later into a shoot with inhibited outgrowth (Fig. 2F). At the infection site, inner and outer cortical cells of the stem were enlarged (Fig. 2G and H).

\textbf{Cytokinin and auxin contents of infected areas.}

Cell division and differentiation are controlled by hormones. To correlate activation of cortical cell division with altered hormone levels at the site of infection, plants were spot inoculated with virulent and nonvirulent strains (control plants) of \textit{R. fascians} at the leaf axils. One, 2, and 3 weeks postinoculation, stem segments comprising the infected axils were harvested for local determination of cytokinins and indole-3-acetic acid (IAA) levels by immunoaffinity chromatography with a broad-spectrum antibody (Prinsen et al. 1995a; Prinsen et al. 1998). The data obtained indicated that the measurement levels of cytokinin bas (zeatin, dihydrozeatin, and isopententenyl adenine) or their derivatives (ribosides, glucosides, and phosphates) were too low to be significant (data not shown). In contrast, during the first 2 weeks of the infection process, IAA levels were higher in tissues inoculated with the virulent strain of \textit{R. fascians} than in control tissues: 89.4 and 224.0 pmol of IAA per g (fresh weight) was obtained compared with 56.4 and 146.0 pmol of IAA per g in control tissues 1 and 2 weeks postinoculation, respectively.

\textbf{CycD3;2 transcript levels are enhanced by \textit{R. fascians} infection and by cytokinins.}

\textit{D}-type cyclin genes were isolated from tobacco and their expression patterns during cell cycle were investigated by Sorrell et al. (1999), who showed that the \textit{Nicta;CycD3;2} transcripts were induced rapidly as stationary cells reentered the cell cycle. To evaluate the effect of \textit{R. fascians} inoculation on \textit{Nicta;CycD3;2} expression, a RNA gel blot analysis was performed with RNA from spotted axils with \textit{Nicta;CycD3;2} as a hybridization probe. The results showed that 5 days postinfection, the \textit{CycD3;2} transcript levels increased up to fourfold when compared with control material infected with the non-pathogenic strain (Fig. 3A). The tobacco \textit{CycD3;2} also was induced in seedlings treated with 1 µM zeatin for 24 h (Fig. 3B).

\textbf{DISCUSSION}

We used a nondamaging infection assay to investigate the \textit{R. fascians}-host interaction at responsive tissues such as leaf axils, leaf blade, and shoot apex. The homogenous responses obtained were the activation of axillary and adventitious meristems that developed in a structure defined as leafy gall. The ontogenesis of this particular symptom has not been described previously. We show that the initial step of leafy gall formation is de novo cell division in the outer cortical cells of stems. Dividing cells form a meristem that acquires zonation and develops into a shoot primordium. Interestingly, a parallel can be made with the induction of nitrogen-fixing root nodules in the \textit{Rhizobium}-legume symbiosis. There, upon stimulation by nod factors, root cortical cells dedifferentiate and start to divide, establishing a nodule primordium (Yang et al. 1994). Signals derived from \textit{R. fascians} induce a mitosis in the outer cortical cells of the stem. Because no evidence for enhanced levels of common cytokinins or cytokinin derivatives during the infection process could be obtained, the hypothesis proposed is that novel types of bacterially produced cytokinin analogs are involved in this process. A previously reported enhancement in IAA levels of infected plants (Vereecke et al. 2000) could be confirmed by a more sensitive technique. However, the origin of the auxin is not clear: it can be correlated with the formation of multiple meristems, which are known sources of auxin production in plants, or with bacterially produced auxins.
The shoot outgrowth in the leafy gall is inhibited, possibly as a result of an extreme apical dominance exerted by each lateral shoot primordium over its neighbors. When a leafy gall is set free from bacteria by antibiotic treatment and is placed on growth medium, normal shoots develop to form a pheno-typically normal plant (Vereecke et al. 2000). These data corroborate Lacey’s (1936) statement that the presence of the bacteria is crucial for symptom maintenance. Here, symptom development is correlated with the presence of bacteria by the microspotting assay, and responsive colonization sites develop into a leafy gall structure, whereas the rest of the plant continues to grow normally.

Another feature of the system is the induction of epiphyllous shoots. Few data are available on adventitious meristem activation in planta. Naturally occurring epiphyllous shoots are found in the ornamental plant Kalanchoe daigremontiana and are thought to arise from leaf margin cells that are blocked in the G1 phase. These cells are reactivated to form undifferentiated meristems that further develop into a small shoot (Kerstetter and Hake 1997). Epiphylly has been observed in plants that overexpress members of the Kn1 class of plant homeobox genes and in plants overexpressing a cytokinin synthesis gene (ipt) from Agrobacterium tumefaciens (Chuck et al. 1996; Li et al. 1992; Sinha et al. 1993). Recently, Rupp et al. (1999) showed a direct link between cytokinin overproduction and cytokinin overproduction in transgenic ip overexpressing Arabidopsis spp. lines and increased mRNA steady-state levels of KNAT1 and STM homeobox genes. Both gene transcripts also are enhanced in the cytokinin overproducing shoot meristem mutant amyl. Together these findings suggest that homeobox gene overexpression and cytokinin overproduction act in the same developmental pathway.

The main advantage of the R. fascians-tobacco system relies in the fact that locally infected plant tissues respond to the bacterial stimuli, thus providing homogenous and specific material to investigate aspects of shoot development at the physiological and molecular level.

Currently, cell-cycle markers are used to study the molecular basis of plant responses toward environmental factors such as stress, pathogens, nutrients, light, and hormones. In the field of plant-microbe interactions, these genes have been used to study nodule formation upon Rhizobium sp. infection (Goormachtig et al. 1997; Yang et al. 1994) and the formation of giant cells and syncytia caused by nematodes (De Almeida Engler et al. 1999; Niebel et al. 1996). Cell-cycle markers proved to be a useful tool to analyze the initial stages of the R. fascians-tobacco interaction. By assaying the CycB1;1 promoter activity, we observed the first cell-division events 3 days after infection. The main result was the correlation of the CycD3;2 transcript inducibility by R. fascians stimuli. D-type cyclins are involved in the regulation of the G1-to-S transition. When stimulated to reenter the cell cycle, quiescent cells show enhanced transcript levels of D-type cyclin genes (Son & et al. 1995). For what we believe is the first time in planta, we show the enhancement of CycD3;2 transcript levels triggered by a phytopathogen. Our data indicate that signals of R. fascians are capable of reprogramming cells to reenter the cell cycle in a controlled, patterned way because the final result is the formation of a well-defined structure, the leafy gall.

MATERIALS AND METHODS

Plant material and growth conditions.

N. tabaccum (L.) cv. (W38) and Petit Havana (SR1), including the transgenic pCycB1;1-gus line (Ferreira et al. 1994), were grown in vitro on half-strength Murashige and Skoog (MS) (1962) medium under a 16-h photoperiod at 24 ± 2°C.

Bacterial strains.

R. fascians strains D188 (pathogenic) and D188-5 (a plasmid-free, nonpathogenic strain) (Desomer et al. 1988) were grown in solid or liquid YEB medium (Miller 1972) at 28°C.

Spot infections.

Bacteria from a late, exponential 2-day-old culture were centrifuged, washed, and resuspended in 0.2 M phosphate buffer (pH 5.7) containing 0.05% Na-citrate, 0.025% MgSO4, and 0.001% thiamine. Aliquots (0.5 to 2 µl) of the bacterial suspension were applied with a glass micropipette that was eventually sustained by a micromanipulator on the target areas.

Histochemical GUS assays.

The histochemical GUS assays were carried out according to Jefferson (1987), with some modifications described by Hemerly et al. (1993). Sections were observed and photographed under a Stemi SV11 stereomicroscope (Zeiss, Jena, Germany).

Microscopic analysis.

Plastic embedding by Technovit 7100 resin (Kulzer Histotechnik, Wehrheim, Germany) and sectioning were performed according to the manufacturer’s protocol. Serial sections (5 µm) were stained with ruthenium red (Sigma, St. Louis, MO, U.S.A.) 0.05% wt/vol water solution and mounted with Depex mounting medium (Gurr, Poole, England). Sections were photographed under a Diaplan light microscope (Leitz, Heerbrugg, Switzerland). Scanning electron microscopy was performed according to Vereecke et al. (2000).
NicotianaCycD3:2 probe synthesis.

First-strand cDNA from total RNA extracted from N. tabacum cv. (W38) stems was synthesized with the SuperScript premagnification system kit (GIBCO-BRL, Gaithersburg, MD, U.S.A.). One-tenth of the reaction mixture was used for the PCR amplification of a fragment from the tobacco CycD3:2 gene (Sorrell et al. 1999) in 50 µl of PCR mixture containing 1.5 mM MgCl₂, 1× PCR buffer II (Perkin Elmer, Norwalk, CT, U.S.A.), all four deoxynucleotide triphosphates (0.2 mM each), 0.2 µM of each primer (F and R), and five units of AmpliTaq (Perkin Elmer). The oligonucleotides used as primers were designed according to sequence information (GenBank accession no. AJ011894) by the SeqLab-Prime computer program, version 10.0 (Genetics Computer Group, Madison, WI, U.S.A.): F, forward (5′-GGAAAAATGATCCAGTGACCC-3′) and, R, reverse (5′-CCGACCGAGATCATACAG-3′). Thirty-five cycles at 95°C for 30 s, 55°C for 45 s, 72°C for 3 min, and a final extension of 5 min were performed. A fragment of the expected 420-bp size and sequence was purified from an agarose gel with the QIAquick gel extraction kit (Qiagen, Hilden, Germany) and used to prepare radiolabeled DNA probes with the T7 QuickPrime system (Amersham Pharmacia Biotech, Little Chalfont, U.K.).

RNA analyses.

Total RNA was isolated with the RNeasy plant mini kit (Qiagen), according to the manufacturer’s protocol. Twenty-five micrograms of RNA samples per lane were separated on 1.2% agarose-formaldehyde gel and transferred to Hybond-N filters (Amersham Pharmacia Biotech). RNA blots were stained with methylene blue to confirm equal loading. Filters were hybridized for 16 h with radiolabeled DNA probes at 65°C in hybridization buffer (100 mM phosphate buffer, pH 7.2; 7% sodium dodecyl sulfate; 0.5 mM EDTA) with 1% bovine serum albumin and 20 µg of denatured herring sperm per ml and washed for 15 min with 0.5× hybridization buffer once at room temperature and twice at 65°C. Hybridized filters were exposed in a PhosphorImager cassette (Amersham Pharmacia Biotech) for 10 days.

Hormone analyses.

Cytokinin and IAA were purified and measured as described previously (Prinsen et al. 1995a; Prinsen et al. 1995b). Cytokinin samples were extracted overnight from 0.5 g of frozen tissue in CHCl₃–methanol (MeOH)–water–acetic acid (Bieleski 1964) and purified by combining solid-phase extraction and immunoaffinity chromatography with a broad-spectrum anti-cytokinin antibody. The 20 ng each of stable isotopes [5,6-2H₂]-Z, [5,6-3H₂]-Z, [5,6-3H₂]-9[RJZ, [5,6-3H₂]-9[G]Z, [5,6-3H₂]-7[G]Z, [5,6-3H₂]-[OG]Z, [5,6-3H₂]-[OG]RZ, [5,6-3H₂]-9[R]Z-phosphate, [5,6-3H₂]-9[R]IP, [5,6-3H₂]-[9R]IP and, [5,6-3H₂]-[9G]IP (Apex International, Honiton, U.K.) were added as internal tracers for recovery and analytical purposes. The different cytokinin fractions obtained after purification were analyzed by (+)ES micro LC/LC-MRM-MS/MS (Prinsen et al. 1995a; Prinsen et al. 1998). IAA was extracted overnight from 0.5 g of frozen tissue in 80% MeOH (9 ml of fresh weight per g) and 50 ng of (phenyl-1,2-C₆H₅)-IAA (Cambridge Isotope Laboratories, Andover, MA, U.S.A.) was initially added as internal tracer for recovery and analytical purposes. After pentafluorobenzyl derivatization of IAA, pentafluorobenzy-1-IAA was analyzed by negative-ion chemical ionization GC-SIR-MS (Epstein and Cohen 1981). Prior to purification, IAA conjugates were converted to free IAA by alkaline hydrolysis (Bialek and Cohen 1989). The data presented correspond to the average of 20 to 30 pooled infected axils in one experiment.

ACKNOWLEDGMENTS

We thank S. Oden for her skillful technical assistance in the hormone measurements. D. Inzé, D. Vereecke, and R. Barroso for critical reading of the manuscript, M. De Cock for preparing it, and R. Verbanck and K. Spuyt for artwork. This work was partially financed by the Interuniversity Poles of Attraction Programme (Belgian State, Prime Minister's Office-Federal Office for Scientific, Technical and Cultural Affairs; F4/15). C.-L. de O. Manes is indebted to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES 1645/98-0) for a predoctoral fellowship.

LITERATURE CITED
